Study on the Permeability Evolution and Its Formation Mechanism of Xiaojihan Aquifer Coal Seam under Plastic Flow

Author:

Guo Jingna12ORCID,Liu Jiangfeng12ORCID,Li Qiang1,Chen Zhanqing1ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, And School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

Study on permeability evolution of an aquifer coal seam in Western China is of great significance for preventing water inrush disaster and realizing water-conserving coal mining. The permeability evolution of an aquifer coal seam is related to a loading path closely under plastic flow. In this work, permeability variations of the Xiaojihan water-bearing coal seam and Longde nonwater coal seam are researched using a transient method under plastic flow. The experiment results indicated the following: (1) Under the same axial strain, the permeability, relative residual strain, and confining pressure influence coefficient of Xiaojihan coal specimens all decrease in plastic flow with the increase of loading-unloading times and confining pressure, while the permeability recovery coefficient increases during this process. (2) The permeability of Xiaojihan water-bearing coal specimens decreases with the growth of axial strain in plastic flow, resulting in the increase of relative residual strain and reinforcement of plasticity. Besides, the confining pressure influence coefficient decreases and the permeability recovery coefficient decreases slightly with the axial strain. (3) Finally, the permeability of Xiaojihan coal specimens is greater than that of Longde coal specimens, while the confining pressure influence coefficient and permeability recovery coefficient of Longde coal specimens are greater than those of Xiaojihan coal specimens. The closure rate of internal cracks of the water-bearing coal specimen is lower than that of the nonwater coal specimen, which is beneficial for water storage and transport.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3