Investigation into the Impact and Buffering Characteristics of a Non-Newtonian Fluid Damper: Experiment and Simulation

Author:

Sun Jingya1,Jiao Sujuan1,Huang Xiuchang1,Hua Hongxing1

Affiliation:

1. Institute of Vibration, Shock and Noise, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China

Abstract

Dampers are widely applied to protect devices or human body from severe impact or harmful vibration circumstances. Considering that dampers with low velocity exponent have advantages in energy absorption, they have been widely used in antiseismic structures and shock buffering. Non-Newtonian fluid with strong shear-thinning effect is commonly adopted to achieve this goal. To obtain the damping mechanism and find convenient methods to design the nonlinear fluid damper, in this study, a hydraulic damper is filled with 500,000 cSt silicone oil to achieve a low velocity exponent. Drop hammer test is carried out to experimentally obtain its impact and buffering characteristics. Then a coupling model is built to analyze its damping mechanism, which consists of a model of impact system and a computational fluid dynamics (CFD) model. Results from the coupling model can be consistent with the experiment results. Simulation method can help design non-Newtonian fluid dampers more effectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3