A Machine Learning-Based Model for Predicting Atmospheric Corrosion Rate of Carbon Steel

Author:

Tran Ngoc-Long1,Nguyen Trong-Ha1,Phan Van-Tien1,Nguyen Duy-Duan1ORCID

Affiliation:

1. Department of Civil Engineering, Vinh University, Vinh 461010, Vietnam

Abstract

The purpose of this study is to develop a practical artificial neural network (ANN) model for predicting the atmospheric corrosion rate of carbon steel. A set of 240 data samples, which are collected from the experimental results of atmospheric corrosion in tropical climate conditions, are utilized to develop the ANN model. Accordingly, seven meteorological and chemical factors of corrosion, namely, the average temperature, the average relative humidity, the total rainfall, the time of wetness, the hours of sunshine, the average chloride ion concentration, and the average sulfur dioxide deposition rate, are used as input variables for the ANN model. Meanwhile, the atmospheric corrosion rate of carbon steel is considered as the output variable. An optimal ANN model with a high coefficient of determination of 0.999 and a small root mean square error of 0.281 mg/m2.month is retained to predict the corrosion rate. Moreover, the sensitivity analysis shows that the rainfall and hours of sunshine are the most influential parameters on predicting the atmospheric corrosion rate, whereas the average chloride ion concentration, the average temperature, and the time of wetness are less sensitive to the atmospheric corrosion rate. An ANN-based formula, which accommodates all input parameters, is thereafter proposed to estimate the atmospheric corrosion rate of carbon steel. Finally, a graphical user interface is developed for calculating the atmospheric corrosion rate of carbon steel in tropical climate conditions.

Funder

Ministry of Education and Training of Vietnam

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3