Fragility Comprehensive Assessment of Low-Rise Cold-Formed Steel Framed Wall Structure Subjected to Wind Load

Author:

Zhang Hao1ORCID,Hou Shiwei1ORCID,Ding Yiming1,Li Chao2,Liu Pengfei1

Affiliation:

1. School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China

2. Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

This paper presents a comprehensive assessment method of the fragility of low-rise cold-formed steel (CFS) framed wall structures subjected to wind hazards considering the fragility of both the main structure and the cladding system. The effects of wind directions on the fragility of CFS framed wall structures were also studied. For the main structure, the fragility curve is established using the maximum interstory drift ratio (ISDRmax) as the performance index for assessing the wind fragility of the structure. For the cladding system, the probabilistic models of the wind load and the cladding component resistance are established based on Monte Carlo simulation, and then methods for the fragility assessment of single cladding components and the cladding system under wind hazards considering the influence of the number and arrangement of the cladding components are proposed. The results indicated that, under strong wind, the cladding system may be damaged before the required wind resistance capacity of the main structure is exhausted. In particular, the roof sheathing is the most prone to damage, followed by the stud wall. That is, before the main structure is severely damaged or collapses, the cladding systems may be severely damaged, rendering the structure unusable. Therefore, the comprehensive assessment of the fragility of this type of structure subjected to wind hazard considering the fragility of both the main structure and the cladding system is more accurate. This study is of great significance for the improvement of the wind resistance performance of CFS structures and the popularization of this type of structure.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference46 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3