Modelization and Calibration of the Power-Law Distribution in Stock Market by Maximization of Varma Entropy

Author:

Liu Chang1ORCID,Chang Chuo2ORCID

Affiliation:

1. School of Economics & Management, University of Science and Technology Beijing, Beijing 100083, China

2. PBC School of Finance, Tsinghua University, Beijing 100083, China

Abstract

Proper description of the return distribution is crucial for investment practitioners. The underestimation of the tail risk may lead to severe consequences, even for assets with moderate fluctuations. However, many empirical studies found that the distribution tails of many financial assets drop off more slowly than the Gaussian distributions. Therefore, we intend to model and calibrate the heavy tails observed in financial fluctuations in this study. By maximizing the Varma entropy with value-at-risk and expected shortfall constraints, we obtain the probability distribution of stock return and observe that the tail of stock return distribution is a power law. Since the variance of the real stock portfolio may be a random variable, using the mean-VaR-ES constraints to maximize the Varma entropy effectively avoids the problem of assuming that the variance is a constant value under the traditional mean-variance constraint. Therefore, the deduced theoretical model would be more consistent with the real market. Using high-frequency data from China’s stock markets, we calibrate our theoretical model and give the concrete form of probability density distribution p(x) for different time intervals. The calibration results show that the tail of the stock return distribution is a power law with most of the power-law orders between −2 and −7. We prove the robustness of our results by calibrating the Varma entropy for S&P 500 of the USA stock market and different stock market indices in China’s A-share market. Our research’s findings not only offer a theoretical perspective for researchers but also give investing professionals a theoretical foundation on which to base their decisions.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3