Recent Research Trends on Zeolitic Imidazolate Framework-8 and Zeolitic Imidazolate Framework-67-Based Hybrid Nanocomposites for Supercapacitor Application

Author:

Chhetri Kisan1ORCID,Adhikari Anup2ORCID,Kunwar Jyotendra2,Acharya Debendra1ORCID,Bhattarai Roshan Mangal3ORCID,Mok Young Sun3ORCID,Adhikari Achyut2ORCID,Yadav Amar Prasad2ORCID,Kim Hak Yong14ORCID

Affiliation:

1. Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561756, Republic of Korea

2. Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal

3. Department of Chemical and Biological Engineering, Jeju National University, Jeju 63243, Republic of Korea

4. Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561756, Republic of Korea

Abstract

Recently, Zeolitic Imidazolate Frameworks (ZIFs) and their hybrid composites have incited a lot of interest in the research community and have shown promising potential in supercapacitors owing to their excellent conductivity, high surface area, tunable structure, rich redox chemistry, composition diversity, etc. Even though many ZIFs are being studied for the advancement of electrode materials used for energy storage applications, in this review, we are focused on ZIF-8 and ZIF-67 only. The electrochemical performance of pure ZIFs is poor due to low electronic conductivity and poor cycling life. To counter this, ZIFs are mixed with other materials like conducting polymers, other transitional metals composites, and activated carbons to prepare hybrid composites. Furthermore, the highly porous structure and large surface area of the ZIFs cage act as an ideal template for designing composites with excellent supercapacitor applications. This reviewis focus on the synthesis and electrochemical performance of such materials. This review is divided into two main parts: the design and synthesis of ZIF-8 and ZIF-67 derivatives for supercapacitor applications and the electrochemical performance of ZIF-8 and ZIF-67-based derivatives in three-electrode and two-electrode setups. Lastly, the challenges and obstacles encountered while employing ZIF-8 and ZIF-67-based composites in supercapacitors will be reviewed and commented on.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3