Affiliation:
1. Information Technology Laboratory, CINVESTAV, Km. 5.5 Carretera Ciudad Victoria-Soto La Marina, 87130 Ciudad Victoria, TAMPS, Mexico
Abstract
Running max/min filters on rectangular kernels are widely used in many digital signal and image processing applications. Filtering with ak×kkernel requires ofk2−1comparisons per sample for a direct implementation; thus, performance scales expensively with the kernel sizek. Faster computations can be achieved by kernel decomposition and using constant time one-dimensional algorithms on custom hardware. This paper presents a hardware architecture for real-time computation of running max/min filters based on the van Herk/Gil-Werman (HGW) algorithm. The proposed architecture design uses less computation and memory resources than previously reported architectures when targeted to Field Programmable Gate Array (FPGA) devices. Implementation results show that the architecture is able to compute max/min filters, on1024×1024images with up to255×255kernels, in around 8.4 milliseconds, 120 frames per second, at a clock frequency of 250 MHz. The implementation is highly scalable for the kernel size with good performance/area tradeoff suitable for embedded applications. The applicability of the architecture is shown for local adaptive image thresholding.
Subject
General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A fast method for particle tracking and triggering using small-radius silicon detectors;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;2020-03
2. A Review of Image Interest Point Detectors: From Algorithms to FPGA Hardware Implementations;Image Feature Detectors and Descriptors;2016