Affiliation:
1. School of Mechanical and Electrical Information, Yiwu Industrial and Commercial College, Yiwu, Zhejiang 322000, China
Abstract
This paper provides an in-depth study and analysis of robot vision features for predictive control and a global calibration of their feature completeness. The acquisition and use of the complete macrofeature set are studied in the context of a robot task by defining the complete macrofeature set at the level of the overall purpose and constraints of the robot vision servo task. The visual feature set that can fully characterize the macropurpose and constraints of a vision servo task is defined as the complete macrofeature set. Due to the complexity of the task, a part of the features of the complete macrofeature set is obtained directly from the image, and another part of the features is obtained from the image by inference. The task is guaranteed to be completely based on a robust calibration-free visual serving strategy based on interference observer that is proposed to complete the visual serving task with high performance. To address the problems of singular values, local minima, and insufficient robustness in the traditional scale-free vision servo algorithm, a new scale-free vision servo method is proposed to construct a dual closed-loop vision servo structure based on interference observer, which ensures the closed-loop stability of the system through the Q-filter-based interference observer, while estimating and eliminating the interference consisting of hand-eye mapping model uncertainty and controlled robot input interference. The equivalent interference consisting of hand-eye mapping model uncertainty, controlled robot input interference, and detection noise is estimated and eliminated to obtain an inner-loop structure that presents a nominal model externally, and then an outer-loop controller is designed according to the nominal model to achieve the best performance of the system dynamic performance and robustness to optimally perform the vision servo task.
Funder
Department of Education of Zhejiang Province
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science