Use of a Simple Mechanical Analogy to Analytically Tune the PD Controller of a Flexible Manipulator System

Author:

Kim Sang-Myeong12ORCID,Kim Heungseob1,Boo Kwangsuck1

Affiliation:

1. High Safety Vehicle Core Technology Research Center, Inje University, 607 Obang-dong, Gimhae 621-749, Republic of Korea

2. Mechanical Engineering Department, UNESP, Ilha Solteira 15385-000, Brazil

Abstract

A study is presented in this paper that uses a simple mechanical analogy to analytically tune the PD (proportional-derivative) controller of a linear flexible manipulator system. More specifically, the aim is to give simple closed-form solutions of the optimal P and D gains to yield the maximum bandwidth under a given damping requirement or conversely the maximum damping under a given bandwidth requirement. The idea of this study is based on the observation that the performance of the complete manipulator system is largely determined by the operational dynamics of the fundamental vibration mode. A lumped element method is thus applied to model this dynamics in terms of simple lumped mechanical elements. It subsequently turns out that the original servo control problem is analogous to a conventional Zener mount design problem, that is, mathematically, to optimize a third-order dynamic system consisting of the Zener model of a viscoelastic mount and an inertial object upon it. A design methodology is finally established to analytically determine the optimal elements of the mount, corresponding to the optimal control gains. Simulations and experiments were also conducted with a single-link flexible beam to support the model and the design methodology developed.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3