A Literature Review Research on Monitoring Conditions of Mechanical Equipment Based on Edge Computing

Author:

Song Liqiang1,Wang Huaiguang1ORCID,Shi Zhiyong1

Affiliation:

1. Department of Vehicle and Electrical Engineering, Shijiazhuang Campus, Army Engineering University of PLA, Shijiazhuang 050003, China

Abstract

The motivation of this research is to review all methods used in data compression of collected data in monitoring the condition of equipment based on the framework of edge computing. Since a large amount of signal data is collected when monitoring conditions of mechanical equipment, namely, signals of running machines are continuously transmitted to be crunched, compressed data should be handled effectively. However, this process occupies resources since data transmission requires the allocation of a large capacity. To resolve this problem, this article examines the monitoring conditions of equipment based on edge computing. First, the signal is pre-processed by edge computing, so that the fault characteristics can be identified quickly. Second, signals with difficult-to-identify fault characteristics need to be compressed to save transmission resources. Then, different types of signal data collected in mechanical equipment conditions are compressed by various compression methods and uploaded to the cloud. Finally, the cloud platform, which has powerful processing capability, is processed to improve the volume of the data transmission. By examining and analyzing the monitoring conditions and signal compression methods of mechanical equipment, the future development trend is elaborated to provide references and ideas for the contemporary research of data monitoring and data compression algorithms. Consequently, the manuscript presents different compression methods in detail and clarifies the data compression methods used for the signal compression of equipment based on edge computing.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3