Design of Medical Image Detail Enhancement Algorithm for Ankle Joint Talar Osteochondral Injury

Author:

Liu Yundong1ORCID,He Xufeng1

Affiliation:

1. Affiliated Nanhua Hospital, University of South China, Health School of Nuclear Industry, Hengyang 421002, China

Abstract

Medical imaging modalities, such as magnetic resonance imaging (MRI) and computerized tomography (CT), have allowed medical researchers and clinicians to examine the structural and functional features of the human body, thereby assisting the clinical diagnosis. However, due to the highly controlled imaging environment, the imaging process often creates noise, which seriously affects the analysis of the medical images. In this study, a medical imaging enhancement algorithm is presented for ankle joint talar osteochondral injury. The gradient operator is used to transform the image into the gradient domain, and fuzzy entropy is employed to replace the gradient to determine the diffusion coefficient of the gradient field. The differential operator is used to discretize the image, and a partial differential enhancement model is constructed to achieve image detail enhancement. Three objective evaluation indexes, namely, signal-to-noise ratio (SNR), information entropy (IE), and edge protection index (EPI), were employed to evaluate the image enhancement capability of the proposed algorithm. Experimental results show that the algorithm can better suppress noise while enhancing image details. Compared with the original image, the histogram of the transformed image is more uniform and flat and the gray level is clearer.

Funder

2019 Hunan Provincial Vocational Education Teaching Reform Research Project: Empirical Research on the O2O Mixed Teaching Mode of “Physiology” in Secondary Vocational Schools

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3