A Hybrid Approach for MS Diagnosis Through Nonlinear EEG Descriptors and Metaheuristic Optimized Classification Learning

Author:

Mohseni Elnaz1ORCID,Moghaddasi Seyed Mahdi2ORCID

Affiliation:

1. Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Biomedical Engineering Department, Semnan University, Semnan, Iran

Abstract

Multiple sclerosis (MS), a disease of the central nervous system, affects the white matter of the brain. Neurologists interpret magnetic resonance images that are often complicated, time-consuming, and contradictory. Using EEG signals, this disease can be analyzed and diagnosed more accurately. However, it is imperative that MS be diagnosed by specialists using assistive technology. Until now, a few methods have been proposed in this field that are sometimes associated with different challenges in analysis. This paper presents a hybrid approach to MS diagnosis in order to decrease classification error rates. Using the proposed method, EEG descriptors in both the time and frequency domains are analyzed. After the feature extraction stage, a modified version of the ant colony optimization method (m-ACO) was used to select the appropriate subset of features. Then, the support vector machine is used to determine whether the disease exists. A metaheuristic algorithm adjusts the support vector machine’s parameters to withstand overfitting challenges. Despite a limited number of input channels, significant classification accuracy has been achieved using wavelet analysis techniques, dividing all five subbands of EEG signals, signal windowing, and extracting efficient features from the data. Additionally, alpha, beta, and gamma bands of the signal are important, and the accuracy, sensitivity, and specificity levels are higher than 98.5%. Compared to similar MS diagnostic methods, the proposed method achieved significantly higher diagnostic accuracy. Application and implementation of this method can be effective in treating neurological diseases, including multiple sclerosis.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3