Affiliation:
1. Department of Anatomy, Basic Medical College, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
2. Department of Histology and Embryolog, Basic Medical College, Qiqihar Medical University, Qiqihar 161006, Heilongjiang, China
Abstract
As a common clinical chronic disease, the incidence of diabetes is increasing year by year. According to the latest statistics from the International Diabetes Federation, as of 2019, the global prevalence of diabetes has reached 8.3%. This study aims to investigate the effect of CXCL-13 on the migration ability of human mesenchymal stem cells (hMSCs) and to clarify the specific molecular mechanism of the protective effect of hMSCs on islet B cells. The hMSCs were cultured in high-glucose environment, and the effect of CXCL-13 on the migration ability of hMSCs was determined by Transwell experiment. After coculture of hMSCs and islet B cells, the activity of cells was detected by CCK8 assay, the expression of Ki-67 in cells was detected by RT-PCR, and the expression of P53 was detected by Western blot to investigate the effect of hMSCs on the proliferation and apoptosis of islet B cells. The effect of hMSCs on the function of islet B cells was determined by glucose stimulated insulin secretion experiment. Transwell experiment results showed that CXCL-13 could promote the migration of hMSCs to islet B cells in high-glucose environment. The results of CCK-8 showed that the cell activity in the coculture group was significantly higher than that of the other groups, and RT-PCR showed that the expression of Ki-67 was significantly increased in the coculture group of hMSCs and islet B cells. The results of Western blot showed that the expression of P53 was significantly decreased in the coculture group, and the glucose stimulated insulin secretion test showed that insulin secretion was significantly increased. It was found that after the inhibition of ATK, cell activity was significantly reduced, and apoptosis was significantly increased. Meanwhile, the expression of Ki-67 was inhibited, the expression of P-53 was significantly increased, and insulin secretion was significantly reduced. To sum up, in a high-glucose environment, CXCL-13 effectively promoted the migration of hMSCs, and hMSCs protected the activity and function of islet B cells through Akt signaling pathway.
Funder
Qiqihar Academy of Medical Sciences Project
Subject
Health Informatics,Biomedical Engineering,Surgery,Biotechnology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献