Enhanced Thermoelectric Performance of Lightly Pb-Doped Sb2Te3 Polycrystalline Alloys for Power Generation in Midtemperature Range

Author:

Park Okmin1,Lee Kyu Hyoung2,Park Sang Jeong1,Lee Se Woong1,Kim Sang-il1ORCID

Affiliation:

1. Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea

2. Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea

Abstract

Sb2Te3 alloys are promising thermoelectric materials because of their outstanding electrical transport properties in the midtemperature range of 500–700 K, while codoping with multiple elements has been successful to improve their thermoelectric performance. In this study, enhanced thermoelectric properties with a maximum thermoelectric figure of merit of 0.97 are reported for singly and lightly Pb-doped Sb2Te3 polycrystalline alloys (Sb2– x Pb x Te3). Very light Pb doping in the range 0.005 x 0.0125 in the Sb2– x Pb x Te3 alloys yielded significantly improved carrier transport properties and increased electrical conductivity while the Seebeck coefficient is decreased moderately, since the density-of-state effective mass is improved much. As a result, power factor for the Pb-doped Sb2Te3 is largely increased up to 3.7 mW/mK2 at 300 K. The lattice thermal conductivity decreased considerably owing to the additional point defect phonon scattering by the Pb despite slight doping. Consequently, a maximum thermoelectric figure of merit of 0.97 was obtained for Sb1.9875Pb0.0125Te3 ( x = 0.0125 ) at 600 K, which is the highest reported value for singly doped Sb2Te3-based alloys. A maximum energy conversion efficiency was calculated to be 9.0% for a temperature difference of 350 K, which is higher than that for other singly or codoped Sb2Te3 alloys.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3