Intelligent Prediction Method of Building Energy Consumption Based on Deep Learning

Author:

Fan Bingqian1ORCID,Xing Xuanxuan1ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Henan University, Kaifeng, Henan 475001, China

Abstract

Building energy consumption prediction plays an important role in realizing building energy conservation control. Limited by some external factors such as temperature, there are some problems in practical applications, such as complex operation and low prediction accuracy. Aiming at the problem of low prediction accuracy caused by poor timing of existing building energy consumption prediction methods, a building energy consumption prediction and analysis method based on the deep learning network is proposed in this paper. Before establishing the energy consumption prediction model, the building energy consumption data source is preprocessed and analyzed. Then, based on the Keras deep learning framework, an improved long short-term memory (ILSTM) prediction model is built to support the accurate analysis of the whole cycle of the prediction network. At the same time, the adaptive moment (Adam) estimation algorithm is used to update and optimize the weight parameters of the model to realize the adaptive and rapid update and matching of network parameters. The simulation experiment is based on the actual dataset collected by a university in Southwest China. The experimental results show that the evaluation indexes MAE and RMSE of the proposed method are 0.015 and 0.109, respectively, which are better than the comparison method. The simulation experiment proves that the proposed method is feasible.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Reference25 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3