Selective Inhibition of PKCβ2 Restores Ischemic Postconditioning-Mediated Cardioprotection by Modulating Autophagy in Diabetic Rats

Author:

Wang Yafeng1,Zhou Lu1,Su Wating1ORCID,Huang Fengnan1,Zhang Yuan1ORCID,Xia Zhong-yuan1ORCID,Xia Zhengyuan23ORCID,Lei Shaoqing1ORCID

Affiliation:

1. Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, China

2. Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China

3. Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China

Abstract

Diabetic hearts are more susceptible to myocardial ischemia/reperfusion (I/R) injury and less sensitive to ischemic postconditioning (IPostC), but the underlying mechanisms remain unclear. PKCβ2 is preferentially overactivated in diabetic myocardium, in which autophagy status is abnormal. This study determined whether hyperglycemia-induced PKCβ2 activation resulted in autophagy abnormality and compromised IPostC cardioprotection in diabetes. We found that diabetic rats showed higher cardiac PKCβ2 activation and lower autophagy than control at baseline. However, myocardial I/R further increased PKCβ2 activation and promoted autophagy status in diabetic rats. IPostC significantly attenuated postischemic infarct size and CK-MB, accompanied with decreased PKCβ2 activation and autophagy in control but not in diabetic rats. Pretreatment with CGP53353, a selective inhibitor of PKCβ2, attenuated myocardial I/R-induced infarction and autophagy and restored IPostC-mediated cardioprotection in diabetes. Similarly, CGP53353 could restore hypoxic postconditioning (HPostC) protection against hypoxia reoxygenation- (HR-) induced injury evidenced by decreased LDH release and JC-1 monomeric cells and increased cell viability. These beneficial effects of CGP53353 were reversed by autophagy inducer rapamycin, but could be mimicked by autophagy inhibitor 3-MA. It is concluded that selective inhibition of PKCβ2 could attenuate myocardial I/R injury and restore IPostC-mediated cardioprotection possibly through modulating autophagy in diabetes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrinology,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3