Guitar Chords Classification Using Uncertainty Measurements of Frequency Bins

Author:

Guerrero-Turrubiates Jesus1,Ledesma Sergio1,Gonzalez-Reyna Sheila2,Avina-Cervantes Gabriel1

Affiliation:

1. Division de Ingenierias, Universidad de Guanajuato, Campus Irapuato-Salamanca, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, 36885 Salamanca, GTO, Mexico

2. Universidad Politecnica de Juventino Rosas, Hidalgo 102, Comunidad de Valencia, 38253 Santa Cruz de Juventino Rosas, GTO, Mexico

Abstract

This paper presents a method to perform chord classification from recorded audio. The signal harmonics are obtained by using the Fast Fourier Transform, and timbral information is suppressed by spectral whitening. A multiple fundamental frequency estimation of whitened data is achieved by adding attenuated harmonics by a weighting function. This paper proposes a method that performs feature selection by using a thresholding of the uncertainty of all frequency bins. Those measurements under the threshold are removed from the signal in the frequency domain. This allows a reduction of 95.53% of the signal characteristics, and the other 4.47% of frequency bins are used as enhanced information for the classifier. An Artificial Neural Network was utilized to classify four types of chords: major, minor, major 7th, and minor 7th. Those, played in the twelve musical notes, give a total of 48 different chords. Two reference methods (based on Hidden Markov Models) were compared with the method proposed in this paper by having the same database for the evaluation test. In most of the performed tests, the proposed method achieved a reasonably high performance, with an accuracy of 93%.

Funder

Consejo Nacional de Ciencia y Tecnología

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data Generation from Robotic Performer for Chord Recognition;IEEJ Transactions on Electronics, Information and Systems;2021-02-01

2. Deep Learning-Based Music Chord Family Identification;Intelligent Computing and Communication;2020

3. Music signal Separation based on improved Multipitch estimation method using Hidden Markov Model;Proceedings of the 2019 4th International Conference on Intelligent Information Processing;2019-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3