Affiliation:
1. Department of Mathematics and State Key Laboratory of Novel Software Technology, Nanjing University, Nanjing 210093, China
Abstract
We prove the global risk optimality of the hedging strategy of contingent claim, which is explicitly (or called semiexplicitly) constructed for an incomplete financial market with external risk factors of non-Gaussian Ornstein-Uhlenbeck (NGOU) processes. Analytical and numerical examples are both presented to illustrate the effectiveness of our optimal strategy. Our study establishes the connection between our financial system and existing general semimartingale based discussions by justifying required conditions. More precisely, there are three steps involved. First, we firmly prove the no-arbitrage condition to be true for our financial market, which is used as an assumption in existing discussions. In doing so, we explicitly construct the square-integrable density process of the variance-optimal martingale measure (VOMM). Second, we derive a backward stochastic differential equation (BSDE) with jumps for the mean-value process of a given contingent claim. The unique existence of adapted strong solution to the BSDE is proved under suitable terminal conditions including both European call and put options as special cases. Third, by combining the solution of the BSDE and the VOMM, we reach the justification of the global risk optimality for our hedging strategy.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献