The Synthesis of Glutamine-Functionalized Block Polymer and Its Application in Triple-Negative Breast Cancer Treatment

Author:

Zhu Yi-Zhi1ORCID,Xu Di1,Liu Zhen1ORCID,Tian Tian2,Deng Fei1,Tang Wen-Juan1ORCID,Wu Yang1ORCID,Zhang Wei1ORCID,Tang Jin-Hai1ORCID

Affiliation:

1. Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China

2. School of Clinical Medicine, Xuzhou Medical University, Xuzhou 221004, China

Abstract

Triple-negative breast cancer (TNBC) is a highly malignant tumor. At present, there are still no targeted drugs for TNBC. Clinical chemotherapeutic drugs, such as doxorubicin (DOX), have the characteristic of nontargeted distribution in treatment of TNBC, causing severe side effects. Therefore, new target treatment strategies for TNBC are of urgent need. It was speculated that glutamine could be a potential target because it is in high demand by TNBC. In this study, we found that the transporter for glutamine, ASCT2 (solute carrier family 1 member 5 (SLC1A5)), is highly expressed in TNBC by analysis of data from The Cancer Genome Atlas (TCGA) and experiments in vitro. Based on this, glutamine was grafted onto a polymeric drug carrier in order to develop a tumor-targeting drug delivery system for treatment of TNBC. Firstly, pH-responsive glutamine-PEG5000-b-PAE10000 (Gln-PEG-b-PAE) copolymers were synthesized using Fmoc-PEG5000-b-PAE10000 (Fmoc-PEG-b-PAE) copolymers. Then, Gln-PEG-b-PAE@DOX micelles were prepared by loading DOX to Gln-PEG-b-PAE copolymer using a solvent casting technology. In vitro, Gln-PEG-b-PAE@DOX micelles exhibited pH-dependent micellization-decellularization behavior; namely, they can rapidly release DOX in acidic environment of pH 6.0 but release very slowly in physiological condition. Moreover, glutamine competition experiment showed that Gln-PEG-b-PAE@DOX micelles had the ability to target MDA-MB-231 cells. Compared to free DOX, Gln-PEG-b-PAE@DOX micelles had significantly greater cytotoxic effect and antiproliferative activity against MDA-MB-231 cells. In vivo, compared to free DOX and mPEG-b-PAE@DOX micelles, Gln-PEG-b-PAE@DOX micelles significantly inhibited tumor growth in tumor-bearing mice. Therefore, Gln-PEG-b-PAE@DOX micelles, as a tumor-targeting drug delivery system, may provide a new method for the treatment of TNBC.

Funder

Basic Research Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3