FAOD-Net: A Fast AOD-Net for Dehazing Single Image

Author:

Qian Wen12ORCID,Zhou Chao12ORCID,Zhang Dengyin23ORCID

Affiliation:

1. College of Telecommunications & Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

2. Jiangsu Key Laboratory of Broadband Wireless Communication and Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

3. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Abstract

In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks. Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3