Influence of Land Use Patterns on Evapotranspiration and Its Components in a Temperate Grassland Ecosystem

Author:

Li Yuzhe12,Fan Jiangwen1,Hu Zhongmin3,Shao Quanqin1,Zhang Liangxia12,Yu Hailing12

Affiliation:

1. Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Key Laboratory of Ecosystem Network Observation and Modeling, Synthesis Research Center of Chinese Ecosystem Research Network, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

To better understand variation in response of components of ecosystem evapotranspiration (ET) to grassland use differences, we selected three typical land use patterns in a temperate steppe area: grazed steppe (G), steppe with grazers excluded (GE), and steppe cultivated to cropland (C). ET was divided into its components evaporation (E) and canopy transpiration (T) using herbicide and a chamber attached to a portable infrared gas analyzer (Li-6400). The results indicated that daily water consumption by ET in G was 3.30 kg m−2d−1; compared with G, ET increased significantly in GE at 13.4% and showed a trend of 6.73% increase in C. Daily water consumption by E increased 24.3% in GE relative to G, and C showed 20.2% more than GE. At 0.46, E/ET in C was significantly higher than G at 0.35. Air temperature and the vapor pressure deficit were closely correlated with variation in diurnal ET, E, and T. The leaf area index (LAI) was also positively correlated with daily ET and E varied among grassland use patterns and explained variation in E/ET (81%). Thus, variation in LAI strongly influences the overall magnitude of ecosystem ET and the composition of its components under different grassland use patterns.

Funder

State Key Technologies R&D Program

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Reference39 articles.

1. Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types

2. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Mille,2007

3. Creating and destroying vacancies in solids and nonequilibrium grain boundary segregation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3