Online Optimization of Collaborative Web Service QoS Prediction Based on Approximate Dynamic Programming

Author:

Luo Xiong12,Luo Hao12,Chang Xiaohui12

Affiliation:

1. School of Computer and Communication Engineering, University of Science and Technology Beijing (USTB), Beijing 100083, China

2. Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing 100083, China

Abstract

More recently, with the increasing demand of web services on the World Wide Web used in the Internet of Things (IoTs), there has been a growing interest in the study of efficient web service quality evaluation approaches based on prediction strategies to obtain accurate quality-of-service (QoS) values. However, it is obvious that the web service quality changes significantly under the unpredictable network environment. Such changes impose very challenging obstacles to web service QoS prediction. Most of the traditional web service QoS prediction approaches are implemented only using a set of static model parameters with the help of designer's a priori knowledge. Unlike the traditional QoS prediction approaches, our algorithm in this paper is realized by incorporating approximate dynamic programming- (ADP-) based online parameter tuning strategy into the QoS prediction approach. Through online learning and optimization, the proposed approach provides the QoS prediction with automatic parameter tuning capability, and prior knowledge or identification of the prediction model is not required. Therefore, the near-optimal performance of QoS prediction can be achieved. Experimental studies are carried out to demonstrate the effectiveness of the proposed ADP-based prediction approach.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3