Loss of BRCA1 Spontaneously Induces the Tumorigenesis in Lacrimal Gland

Author:

Kim Sun Eui1,Baek Hye Jung1,Park Eun Jung1,Lim Sung Chul2ORCID,Kim Sang Soo1ORCID

Affiliation:

1. Research Institute, National Cancer Center Research Institute, Goyang 10408, Republic of Korea

2. Department of Pathology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea

Abstract

Environmental and genetic factors exert important influences on lifespan and neoplastic transformation. We have previously shown that spontaneous tumors form frequently in mice homozygous for a full-length Brca1 deletion. In general, mutations of BRCA1 are closely associated with induction of breast and ovarian cancers but are also known to contribute to the incidence of other cancers at a low frequency. Female Brca1-mutant mice (Brca1co/coMMTV-cre) were generated by crossing Brca1 conditional knockout mice and MMTV-cre mice, and the occurrence of lacrimal gland abnormalities and tumors was followed until mice reached 18 months of age. Lacrimal gland tumors, which occur at a very low frequency in the human population (1 per 1,000,000 per year), were detected in 7 cases of Brca1co/coMMTV-cre mice (2.75%) older than 9 months of age. None of seven mice exhibited any abnormality in the mammary gland including neoplasia, suggesting lacrimal gland tumor is spontaneously and independently formed. These tumors, which were detected in seven mutant mice that displayed exophthalmoses, were malignant, originated from epithelial cells, and were identified as acinic cell carcinoma by pathological analysis. Further analysis revealed that tumorigenesis was accompanied by the accumulation of cyclin D1 and decreased expression of the cellular oncogenes, c-Myc, c-Jun, and c-Raf. Tumors also exhibited rearrangement of cytoskeletal proteins, including β-catenin, keratin 5, and vimentin, depending on tumor progression. These results suggest that BRCA1 is involved in genetic stability of the lacrimal gland, providing new insight into genomic instability in organism maintenance and tumorigenesis of the lacrimal gland.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3