Affiliation:
1. Department of Physics, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
2. Department of Physics, Kisii University, P.O. Box 408-40200, Kisii, Kenya
Abstract
Lamu Basin is located in South Eastern Kenya and covers about 170 000 km2 both onshore and offshore. Kenya’s Lamu Basin is hitherto underexplored even though there have been notable oil and gas discoveries along the margin of East Africa. This study focuses on the shallow section of the Lamu offshore bounded by 39°E to 43°E by 2°S to 6°S, whereby, unfortunately, some of the wildcat wells turned out to be dry although expensive. Gravity interpretation techniques such as spectral analysis and first horizontal derivative were applied to the reduced gravity data to delineate and model structures to minimize the high investment risks. The gravity data used in this study were sourced from the International Gravity Bureau (BGI) and National Oil Corporation of Kenya (NOCK) digital data courtesy of companies like Woodside Energy, Anadarko Kenya Limited, and Total Exploration and Production companies. The obtained reduced gravity data were gridded to produce the gravity anomaly grids (Free air, Bouguer, and Isostacy), which were consequently drawn into maps. From spectral analysis, depths to shallow sources and deep sources were estimated. These depths were used to set regional and residual separation filters using the Gaussian filter. The first horizontal derivative (FHD) applied to the regional Isostatic gravity anomaly map yielded features that were inferred as intrasediment fractures/faults trending in NW-SE and NE-SW directions. The features like the ridges, troughs, and faults mainly trending in the NW-SE direction are discernable from the regional anomaly map. The developed models show the basement highs and lows with a possibility of anticlinal and synclinal structures and thick sedimentary successions likely to represent good hydrocarbon source kitchens.
Subject
Geophysics,Water Science and Technology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献