Extension of the Simulation Model of Bubble Growth during Phase Change Heat Transfer Using Volume of the Fluid Flow Model

Author:

Kalim Muhammad1,Ali Asif Iqbal1ORCID,Khan Adnan1ORCID

Affiliation:

1. Department of Mathematics, National College of Business Administration and Economics, Lahore, Pakistan

Abstract

Nucleate boiling is used in numerous engineering applications, such as the chemical, manufacturing, thermal, nuclear, and electronic industries. This research paper deals with the numerical analysis of bubble growth using a fluid flow model. This physical phenomenon of bubble growth has not been discussed mechanically and does not throw light on empirical models. We are discussing this phenomenon in another way to get the required results in this paper. Simulation of bubble growth is already published by measuring the volume of fluid flow; the method is known as VOFF tracking method. Lee’s model has already discussed the phase change that occurs due to evaporation and condensation of the fluid. We have used the method in which the equation terms involving energy and mass source caused by phase change are incorporated into the control equations by additional subroutines written in C language. We have mentioned in detail the results of simulating mass transfer caused by phase change and the effect of subcooling on bubble growth. The results thus obtained show that the subcooling effect prevents the growth of bubbles from growing due to the certain amount of bubble caps in the subcooled area. The effect of evaporation of the liquid increases the size of the bubbles in both the subcooled and the superheated zone.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3