Music Score Recognition Method Based on Deep Learning

Author:

Lin Qin1ORCID

Affiliation:

1. Art College of Guizhou University of Finance and Economics, Guiyang 550001, Guizhou, China

Abstract

In recent years, the recommendation application of artificial intelligence and deep music has gradually become a research hotspot. As a complex machine learning algorithm, deep learning can extract features with value laws through training samples. The rise of deep learning network will promote the development of artificial intelligence and also provide a new idea for music score recognition. In this paper, the improved deep learning algorithm is applied to the research of music score recognition. Based on the traditional neural network, the attention weight value improved convolutional neural network (CNN) and high execution efficiency deep belief network (DBN) are introduced to realize the feature extraction and intelligent recognition of music score. Taking the feature vector set extracted by CNN-DBN as input set, a feature learning algorithm based on CNN&DBN was established to extract music score. Experiments show that the proposed model in a variety of different types of polyphony music recognition showed more accurate recognition and good performance; the recognition rate of the improved algorithm applied to the soundtrack identification is as high as 98.4%, which is significantly better than those of other classic algorithms, proving that CNN&DBN can achieve better effect in music information retrieval. It provides data support for constructing knowledge graph in music field and indicates that deep learning has great research value in music retrieval field.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3