Discrete Generalized Inverted Exponential Distribution: Case Study Color Image Segmentation

Author:

Elaziz Mohamed Abd123ORCID,Abdelrahman Nahla S.2ORCID,Hassan N. A.2ORCID,Mohamed M. O.2ORCID

Affiliation:

1. Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt

2. Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt

3. Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, P.O. Box 346, UAE

Abstract

We present in this paper a discrete analogue of the continuous generalized inverted exponential distribution denoted by discrete generalized inverted exponential (DGIE) distribution. Since, it is cumbersome or difficult to measure a large number of observations in reality on a continuous scale in the area of reliability analysis. Yet, there are a number of discrete distributions in the literature; however, these distributions have certain difficulties in properly fitting a large amount of data in a variety of fields. The presented DGIE β , θ has shown the efficiency in fitting data better than some existing distribution. In this study, some basic distributional properties, moments, probability function, reliability indices, characteristic function, and the order statistics of the new DGIE are discussed. Estimation of the parameters is illustrated using the moment's method as well as the maximum likelihood method. Simulations are used to show the performance of the estimated parameters. The model with two real data sets is also examined. In addition, the developed DGIE is applied as color image segmentation which aims to cluster the pixels into their groups. To evaluate the performance of DGIE, a set of six color images is used, as well as it is compared with other image segmentation methods including Gaussian mixture model, K-means, and Fuzzy subspace clustering. The DGIE provides higher performance than other competitive methods.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3