Investigation of Error Probability for Grid and Random Uniform Topologies in a Variable Noise Environment

Author:

Iskandarani Mahmoud Zaki1ORCID

Affiliation:

1. Faculty of Engineering, Al-Ahliyya Amman University, Amman, Jordan

Abstract

Investigation of the effect of topology on the communication efficiency of WSN nodes is carried out through simulation of 9 nodes in a 12 by 12 meters area. The obtained data and plots indicate that the grid topology is a more efficient and stable topology to use in comparison to the random uniform topology. The deduction is supported by probability of error as a function of error distribution values. Five different noise levels are used in the simulation (0dBm, −20 dBm, −40 dBm, −60 dBm, −80 dBm, and −100 dBm) with an output power of −10 dBm. The work shows that at −60 dBm redistribution of probability of error as a function of error values started to occur with higher level error values associated with the random uniform topology compared with the grid topology occurring at −60 dBm noise. The work also shows the relationship between received signal strength indicator (RSSI) and probability of error which decreases as RSSI increase in a similar manner as signal to noise ratio (SNR). Both RSSI and SNR are related through the mathematical model presented in the paper which is based on the path loss model. Common features between the error probability model and Gaussian interpolation function are also presented. A simplified 1-D design model is also presented to enable initial topology considerations. Criteria are also established to enable relating SNR, RSSI, topology, and WSN incremental position.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examination of Average Consensus with Maximum-degree Weights and Metropolis-Hastings Algorithm in Regular Bipartite Graphs;2022 20th International Conference on Emerging eLearning Technologies and Applications (ICETA);2022-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3