An Energy Efficiency Study of Web-Based Communication in Android Phones

Author:

Ayala Inmaculada1ORCID,Amor Mercedes1ORCID,Fuentes Lidia1

Affiliation:

1. Lenguajes y Ciencias de la Computación, Universidad de Málaga, Andalucía Tech, Málaga 29071, Spain

Abstract

Currently, mobile devices are the most popular pervasive computing devices, and they are becoming the primary way for accessing Internet. Battery is a critical resource in such personal computing gadgets, network communications being one of the primary energy consuming activities in any mobile app. Indeed, as web-based communication is the most used explicitly or implicitly by mobile devices, HTTP-based traffic is the most power demanding one. So, mobile web developers should be aware of how much energy demands the different web-based communication alternatives. The goal of this paper is to measure and compare the energy consumption of three asynchronous HTTP-based methods in mobile devices in different browsers. Our experiments focus on three HTTP-based asynchronous communication models that allow a web server to push data to a client browser through a HTTP/1.1 interaction: Polling, Long Polling, and WebSockets. The resulted measurements are then analysed to get more accurate understanding of the impact of the selected method, and the mobile browser, in the energy consumption of the asynchronous HTTP-based communication. The utility of these experiments is to show developers what are the factors and settings that mostly influence the energy consumption when different web-based asynchronous communication methods are used, helping them to choose the most beneficial solution if possible. With this information, mobile web developers should be able to reduce the power consumption of the front-end of web applications for mobile devices, just selecting and configuring the best asynchronous method or mobile browser, improving the performance of HTTP-based communication in terms of energy demand.

Funder

European Regional Development Fund

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A systematic review on techniques and approaches to estimate mobile software energy consumption;Sustainable Computing: Informatics and Systems;2024-01

2. Energy efficiency of the Visitor Pattern: contrasting Java and C++ implementations;Empirical Software Engineering;2023-10-28

3. Client‐side energy and GHGs assessment of advertising and tracking in the news websites;Journal of Industrial Ecology;2023-01-09

4. Big Data Intelligent Analysis Based Web Front-end Performance Optimization and Its Application Research;2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT);2022-12-26

5. The Energy Cost of the Visitor Pattern;2022 IEEE International Conference on Software Maintenance and Evolution (ICSME);2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3