Semantic Analysis of Public Health Medical Issues Based on Convolution Neural Networks

Author:

Xu Yulong12ORCID,Zhao Yingying1,Rong Hao1,Liu Fangfang1,Lv Yali1,Zhu Honglei1ORCID

Affiliation:

1. School of Information Technology, Henan University of Chinese Medicine, Zhengzhou 450046, China

2. School of Information Engineering, Zhengzhou University, Zhengzhou 450002, China

Abstract

Text mining and semantic analysis of medical public health issues are the main points for intelligent medical interaction, but less relevant research has been done on them. This article conceives a convolutional neural network for the semantic classification of public health medical issues. The dual convolution layer is used to further reduce the dimension of the data, extract more in-depth information from the data, and map the features. Each convolution layer includes several convolution nuclei to extract semantic characteristics, and then, the complete connection layer is input to the classifier to obtain the results of the classification. To check the classification effect, the dictionary artificial construction and the double hidden-layers neuronal network are used for semantic classification, and the three methods are compared and tested on the six real datasets. The experimental results show that when the quality of the dataset is high, the convolution neural network method proposed in this paper exceeds the last two methods. The proposed method is higher than the construction of the artificial dictionary and the double hidden-layers neural network in the recall rate: 0.153 and 0.037, and greater than 0.07 and 0.01 for the F1 measure rate, respectively. When the quality of the dataset is general, the models of the three methods do not give good classification results. Finally, it is concluded that the convolutional neural network method conceived has a good semantic recognition performance in public health medical issues.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3