Flow-Based 6D Pose Tracking of Uncooperative Spacecrafts

Author:

Su Yu1ORCID,Zhang Zexu1ORCID,Yuan Mengmeng1,Wang Yishi1

Affiliation:

1. School of Astronautics, Harbin Institute of Technology, Harbin 150001, China

Abstract

In this work, an optical-flow-based pose tracking method with long short-term memory for known uncooperative spacecraft is proposed. In combination with the segmentation network, we constrain the optical flow area of the target to cope with harsh lighting conditions and highly textured background. With the introduction of long short-term memory structure, the proposed method can maintain a robust and accurate tracking performance even in a long-term sequence of images. In our experiments, the pose tracking effects in the synthetic images as well as the SwissCube dataset images are tested, respectively. By comparing with the state-of-the-art pose tracking frameworks, we demonstrate the performance of our method and in particular the improvements under complex environments.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference44 articles.

1. Remove debris mission, from concept to orbit;B. Taylor

2. Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering

3. Segmentation-driven 6D object pose estimation;Y. Hu

4. Monocular Model-Based 3D Tracking of Rigid Objects: A Survey

5. iPose: instance-aware 6D pose estimation of partly occluded objects;O. H. Jafari,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3