A New Efficient Hybrid Method Based on FEM and FDM for Solving Burgers’ Equation with Forcing Term

Author:

Cakay Aysenur BusraORCID,Selim SelmahanORCID

Abstract

This paper presents a study on the numerical solutions of the Burgers’ equation with forcing effects. The article proposes three hybrid methods that combine two‐point, three‐point, and four‐point discretization in time with the Galerkin finite element method in space (TDFEM2, TDFEM3, and TDFEM4). These methods use backward finite difference in time and the finite element method in space to solve the Burgers’ equation. The resulting system of the nonlinear ordinary differential equations is then solved using MATLAB computer codes at each time step. To check the efficiency and accuracy, a comparison between the three methods is carried out by considering the three Burgers’ problems. The accuracy of the methods is expressed in terms of the error norms. The combined methods are advantageous for small viscosity and can produce highly accurate solutions in a shorter time compared to existing numerical schemes in the literature. In contrast to many existing numerical schemes in the literature developed to solve Burgers’ equation, the methods can exhibit the correct physical behavior for very small values of viscosity. It has been demonstrated that the TDFEM2, TDFEM3, and TDFEM4 can be competitive numerical methods for addressing Burgers‐type parabolic partial differential equations arising in various fields of science and engineering.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3