Comparative Analysis of Different Control Strategies for Relift Luo Converter

Author:

Banupriya R.1,Nagarajan R.2ORCID,Kalis K. R. N.3

Affiliation:

1. Department of Electrical and Electronics Engineering, PGP College of Engineering and Technology, Tamil Nadu, India

2. Department of Electrical and Electronics Engineering, Gnanamani College of Technology, Tamil Nadu, India

3. Department of Electronics and Communication Engineering, Kongunadu College of Engineering and Technology, Tamil Nadu, India

Abstract

Dual-output DC to DC converters have drawn attention in the domestic, automobile, and industrial domains. A dual-output converter usually provides a voltage step-down channel and a voltage step-up channel. Typically, an automobile needs a battery charging unit, a traction motor drive, and several other applications. A typical application may require two channels of DC output with a low-voltage (LV) channel and a high-voltage (HV) channel. While the generic boost-derived and quadratic boost-derived dual-output converters are available in the literature, this article focuses on the control aspects of a relift type Luo converter-derived dual-output converter (LDDOC). A solar photovoltaic (SPV) source is the main power, and it charges a battery. The LV loads may be connected across the battery, and the relift stage delivers a regulated 48 V output. The regulation of the 48 V output using a PI controller, a fuzzy logic controller, an ANN-based controller, and a sliding mode controller (SMC) has been studied using simulations. The simulations reveal that the sliding mode controller is advantageous because of meeting out the required performance, easy implementation, and low cost. An experimental setup has also been developed to verify the performance of the sliding mode controller for the regulation of the HV channel output voltage at 48 V.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3