Affiliation:
1. Department of Automobile Engineering, Academy of Army Armored Forces, Beijing 100072, China
Abstract
Aiming at the control problems for load variations of the load-carrying quadruped walking vehicle, the method combining centroidal dynamics and adaptive sliding mode control is proposed to ensure the weight adaptation and improve the tracking accuracy of forward speed and lateral speed. The motion control of the walking vehicle is divided into two parts: torso motion control and swinging legs motion control. The control methods of centroidal dynamics and task space PD are applied to the motion control of the torso, and the virtual model control method is applied to the motion control of swinging legs. Then, the adaptive sliding mode control algorithm is applied in the height direction of the vehicle to realize the adaptation to weight change and the weight identification, and the tracking accuracy of forward speed and lateral speed is improved by combining the centroidal dynamics. Adams and Simulink are used to simulate the trotting gait on the flat ground and slope when the weight of walking vehicle changes, and comparisons are made with the virtual model control method. The results show that the method combining centroidal dynamics and adaptive sliding mode control can realize the adaptability to load variations and reduce the forward speed and lateral speed tracking error, which proves the effectiveness of the proposed control method.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献