A Buffer Overflow Prediction Approach Based on Software Metrics and Machine Learning

Author:

Ren Jiadong12,Zheng Zhangqi12ORCID,Liu Qian12,Wei Zhiyao12,Yan Huaizhi3

Affiliation:

1. School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei, China

2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao City 066004, China

3. Beijing Key Laboratory of Software Security Engineering Technique, Beijing Institute of Technology, South Zhongguancun Street, Haidian District, Beijing 100081, China

Abstract

Buffer overflow vulnerability is the most common and serious type of vulnerability in software today, as network security issues have become increasingly critical. To alleviate the security threat, many vulnerability mining methods based on static and dynamic analysis have been developed. However, the current analysis methods have problems regarding high computational time, low test efficiency, low accuracy, and low versatility. This paper proposed a software buffer overflow vulnerability prediction method by using software metrics and a decision tree algorithm. First, the software metrics were extracted from the software source code, and data from the dynamic data stream at the functional level was extracted by a data mining method. Second, a model based on a decision tree algorithm was constructed to measure multiple types of buffer overflow vulnerabilities at the functional level. Finally, the experimental results showed that our method ran in less time than SVM, Bayes, adaboost, and random forest algorithms and achieved 82.53% and 87.51% accuracy in two different data sets. The method presented in this paper achieved the effect of accurately predicting software buffer overflow vulnerabilities in C/C++ and Java programs.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3