Affiliation:
1. Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh 11451, Saudi Arabia
Abstract
Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Due to the large production and use of this plastic, its waste represents one of the most critical environmental problems. The purpose of this study is to convert PET waste into a valuable material. The consumed PET was transformed into a precursor to synthesize a polyionic liquid (PIL) that was used for dehydrating crude oil emulsions. To do so, the consumed PET was converted to bis(2-hydroxyethyl) terephthalate (BHET). First, BHET and tetraethylene glycol were reacted separately with thionyl chloride, obtaining the corresponding alkyl halides, bis(2-chloroethyl) terephthalate, BCET, and TEC, respectively. Next, the obtained alkyl halides, BCET and TEC, were reacted with 1,5-pentanediamine, yielding a polymer (BTP). Finally, BTP was reacted with acetic acid to produce the corresponding PIL (BTP–PIL). The structure and thermal stability of BTP–PIL were characterized using nuclear magnetic resonance spectroscopy and thermal gravimetric analysis. The dehydration performance of PIL and the original polymer was investigated using the bottle test method, including several factors such as demulsifier dose, brine content, temperature, and settling time. Results indicated that PIL achieved high performance in dehydrating crude oil emulsions.
Subject
Polymers and Plastics,Organic Chemistry,General Chemical Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献