Performance Analysis of Distance-Based D2D Matching Mechanism

Author:

Liu Qiaoshou1,Gu Yingchen1ORCID,Wang Jiaxin1,Zou Jianwen1

Affiliation:

1. School of Communication and Information Engineering, Advanced Network and Intelligent Connection Technology Key Laboratory of Chongqing Education Commission of China, Chongqing Key Laboratory of Ubiquitous Sensing and Networking, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

The traditional cellular architecture where devices connect to their service base station (BS) may cause poor performance especially for edge users. Device-to-device (D2D) communication enables nearby user as a relay to help BS forward information, thereby improving the network coverage and quality of service (QoS) of edge users. This paper proposes a distance-based D2D matching mechanism for general cellular networks, where a relay user who successfully connects to its targeted BS can transmit data to its closest user for D2D communication. A link of BS to D2D pair contains two sublinks, which occur at different time phases in each cell. Assuming a nonsynchronous system, we consider that there exists cross-layer interference for D2D links. Based on the techniques of stochastic geometry, we develop the performance of coverage probability and ergodic rate of the D2D network. A key intermediate step in this analysis is the derivation of the interference expressions for D2D links caused by BSs and cochannel D2D users. Then, we derive the meta distribution of the signal-to-interference ratio (SIR) to capture the performance changes of individual links. Simulation results demonstrate that our matching mechanism based on the appropriate time resource allocation favors the edge users with a higher probability of successful communication and transmission rate.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3