Exosomes Secreted from Adipose-Derived Stem Cells Are a Potential Treatment Agent for Immune-Mediated Alopecia

Author:

Li Yanqiao1ORCID,Wang Guangxing2ORCID,Wang Qian2ORCID,Zhang Yun3ORCID,Cui Lei456ORCID,Huang Xin1ORCID

Affiliation:

1. Department of Dermatology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China

2. School of Medicine, Tongji University, Shanghai 200092, China

3. Institute for Regenerative Medicine & Department of Joint Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200092, China

4. Department of Plastic Surgery, Beijing Shijitan Hospital Affiliated to Capital Medical University, Beijing 100038, China

5. Department of Stem Cells and Regenerative Medicine, School of Medicine, Tongji University, Shanghai 200092, China

6. Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education of the People’s Republic of China & Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai 200092, China

Abstract

Background. Alopecia has become an exceedingly prevalent dermatological disorder. Etiologically, infection (bacterial and fungal infection), inflammation, and immune dysregulation are the main causes of immune-mediated hair loss. Treating hair loss has remained challenging as the available therapies are limited. Exosomes from adipose-derived stem cells (ADSC-Exos) have been used for treating neurodegenerative diseases and autoimmune diseases and in wound-healing treatments. However, the function and mechanism of ADSC-Exos in alopecia treatment remain unclear. This study is aimed at investigating the effects of ADSC-Exos on hair growth in vitro and in vivo for potentially treating immune-mediated alopecia and further exploring the underlying mechanism. Methods. Cell proliferation, migration, and apoptosis of dermal papilla cells (DPCs) that were treated with ADSC-Exos were detected using the cell counting kit-8 (CCK-8) assay, scratch wound-healing assay, and flow cytometry assay, respectively. A C57BL/6 hair-depilated mouse model was established in vivo; then, ADSC-Exos were subcutaneously injected alone or in combined with minoxidil. The effects of ADSC-Exos on hair growth, pathological changes, and the related mechanism were investigated by HE staining, quantitative real‐time PCR (qRT-PCR), western blotting, and RNA sequencing (RNA-seq). Results. ADSC-Exos significantly promoted DPC proliferation and migration while also reducing apoptosis. In addition, compared with the control group, ADSC-Exos-treated mice had better hair growth, more hair follicles (HFs) and thicker dermis. RNA-seq revealed that the miR-22 and TNF-α signaling pathways were markedly downregulated in DPCs after ADSC-Exos treatment. In addition, according to qRT-PCR and western blotting results, the Wnt/β-catenin signaling pathway was activated in the skin of ADSC-Exos-treated mice. Conclusion. ADSC-Exos therapy positively affected the promotion of hair regrowth by regulating miR-22, the Wnt/β-catenin signaling pathway, and the TNF-α signaling pathway, implying that ADSC-Exos could be a promising cell-free therapeutic strategy for immune-mediated alopecia.

Funder

Shanghai Outstanding Young Medical Talent Training Funding Program

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3