Deep Learning Algorithm for Brain-Computer Interface

Author:

Mansoor Asif1,Usman Muhammad Waleed2,Jamil Noreen2ORCID,Naeem M. Asif2ORCID

Affiliation:

1. National University of Sciences and Technology, Islamabad, Pakistan

2. National University of Computer and Emerging Sciences, Islamabad, Pakistan

Abstract

Electroencephalography-(EEG-) based control is a noninvasive technique which employs brain signals to control electrical devices/circuits. Currently, the brain-computer interface (BCI) systems provide two types of signals, raw signals and logic state signals. The latter signals are used to turn on/off the devices. In this paper, the capabilities of BCI systems are explored, and a survey is conducted how to extend and enhance the reliability and accuracy of the BCI systems. A structured overview was provided which consists of the data acquisition, feature extraction, and classification algorithm methods used by different researchers in the past few years. Some classification algorithms for EEG-based BCI systems are adaptive classifiers, tensor classifiers, transfer learning approach, and deep learning, as well as some miscellaneous techniques. Based on our assessment, we generally concluded that, through adaptive classifiers, accurate results are acquired as compared to the static classification techniques. Deep learning techniques were developed to achieve the desired objectives and their real-time implementation as compared to other algorithms.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3