Faulty Line Selection Based on Modified CEEMDAN Optimal Denoising Smooth Model and Duffing Oscillator for Un-Effectively Grounded System

Author:

Hou Sizu1,Guo Wei1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, China

Abstract

As the un-effectively grounded system fails, the zero-sequence current contains strong noise and nonstationary features. This paper proposes a novel faulty line selection method based on modified complete ensemble empirical mode decomposition with adaptive noise (MCEEMDAN) and Duffing oscillator. Here, based on multiscale permutation entropy, fuzzy c-means clustering, and general regression neural network for abnormal signal detection, the MCEEMDAN is proposed. The endpoint mirror method is used to suppress the endpoint effect problem in the decomposition stage. The proposed algorithm is able to decompose the original signal into a series of intrinsic mode functions, which can complete the first filtering. The research shows that it can efficiently suppress the mode confusing phenomenon of empirical mode decomposition (EMD) and is also more complete and orthogonal than ensemble empirical mode decomposition (EEMD) and complementary ensemble empirical mode decomposition (CEEMD). The optimal denoising smooth model is established for choosing optimal intrinsic mode functions to complete the second filtering. It can ensure that the reconstructed filtered signal has better smoothness and similarity. The optimal denoising smooth model of MCEEMDAN can not only keep useful details of the original signal but also reduce the noise and smooth signal. The bifurcation characteristic of the chaotic oscillator is applied in weak signal detection. The zero-sequence current’s denoising result is extracted as the input signal of the Duffing system. The faulty line could be selected by observing the phase diagram of the system. The research results verify the usability and effectiveness of the proposed method.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3