Cyclophosphamide Attenuates Fibrosis in Lupus Nephritis by Regulating Mesangial Cell Cycle Progression

Author:

Ma Yuehong12,Fang Ling3,Zhang Rui1,Zhao Peng4,Li Yafeng12ORCID,Li Rongshan1ORCID

Affiliation:

1. Shanxi Key Laboratory of Kidney Disease, Department of Nephrology, Shanxi Provincial People’s Hospital, Taiyuan, China

2. Shanxi Precision Medicine Center, Shanxi Provincial People’s Hospital, Taiyuan, China

3. Shanxi Institute of Scientific and Technical Information, Taiyuan, China

4. Department of Dermatology, Shanxi Provincial People’s Hospital, Taiyuan, China

Abstract

Objectives. Most patients with systemic lupus erythematosus (SLE) develop lupus nephritis (LN) with severe kidney manifestations. Renal fibrosis can be primarily attributed to overproliferation of mesangial cells (MCs), which are subject to drug treatment. Nevertheless, the detailed mechanisms remain elusive. We sought to identify the effect of cyclophosphamide (CTX), a drug commonly used for LN treatment, on MC proliferation and explore its underlying mechanisms. Material/Methods. Cell proliferation and fibrosis in mouse kidney tissues were determined by histopathology staining techniques. Flow cytometry was used for cell cycle analysis. Cell cycle regulators were examined in vitro following treatment of immortalized human MCs with platelet-derived growth factor subunit B (PDGF-B). Quantitative real-time PCR and western blot analyses were used to measure the mRNA and protein levels of candidate cell cycle regulators, respectively. Results. CTX inhibited cell overproliferation induced by platelet-derived growth factor subunit B in vitro and in vivo. CTX (40 mg/l) was sufficient to induce G0/G1 phase cell cycle arrest. CTX treatment downregulated many critical cell cycle regulators including cyclins and cyclin-dependent kinases but upregulated cyclin-dependent kinase inhibitors. Additionally, CTX-treated samples showed significantly reduced fibrosis, as indicated by lower expression of interleukin-1β and α-smooth muscle actin. Conclusion. CTX inhibits proliferation of MCs by modulating cell cycle regulator and therefore arresting them at G1 phase. CTX treatment significantly alleviates the severity of renal fibrosis. These findings provide novel insights into the mechanisms by which CTX affects LN.

Funder

Social Development Project of Science and Technology Department of Shanxi Province of China

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3