Performance Analysis of Resource-Aware Task Scheduling Methods in Wireless Sensor Networks

Author:

Khan Muhidul Islam1,Rinner Bernhard1ORCID

Affiliation:

1. Institute of Networked and Embedded Systems, Alpen-Adria-University of Klagenfurt, 9020 Klagenfurt, Austria

Abstract

Wireless sensor networks (WSNs) are an attractive platform for monitoring and measuring physical phenomena. WSNs typically consist of hundreds or thousands of battery-operated tiny sensor nodes which are connected via a low data rate wireless network. A WSN application, such as object tracking or environmental monitoring, is composed of individual tasks which must be scheduled on each node. Naturally the order of task execution influences the performance of the WSN application. Scheduling the tasks such that the performance is increased while the energy consumption remains low is a key challenge. In this paper we apply online learning to task scheduling in order to explore the tradeoff between performance and energy consumption. This helps to dynamically identify effective scheduling policies for the sensor nodes. The energy consumption for computation and communication is represented by a parameter for each application task. We compare resource-aware task scheduling based on three online learning methods: independent reinforcement learning (RL), cooperative reinforcement learning (CRL), and exponential weight for exploration and exploitation (Exp3). Our evaluation is based on the performance and energy consumption of a prototypical target tracking application. We further determine the communication overhead and computational effort of these methods.

Funder

Education, Culture and Audiovisual Executive Agency

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3