Nuclear Polymer Explains the Stability, Instability, and Nonexistence of Nuclides

Author:

Pons Dirk J.1,Pons Arion D.2,Pons Aiden J.3

Affiliation:

1. Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand

2. University of Canterbury, Christchurch 8020, New Zealand

3. Rangiora New Life School, Rangiora 7400, New Zealand

Abstract

Problem. The explanation of nuclear properties from the strong force upwards has been elusive. Approach. Design methods were used to develop conceptual mechanics for the bonding arrangements between nucleons, based on the covert structures for the proton and neutron as defined by the Cordus theory, a type of nonlocal hidden-variable design with discrete fields. Findings. Nuclear bonding arises from the synchronous interaction between the discrete fields of the proton and neutron. This results in not one but multiple types of bond, cis- and transphasic, and assembly of chains and bridges of nucleons into a nuclear polymer. The synchronous interaction constrains the relative orientation of nucleons, and hence the nuclear polymer takes only certain spatial layouts. The stability of nuclides is entirely predicted by morphology of the nuclear polymer and the cis-/transphasic nature of the bonds. The theory successfully explains the qualitative stability characteristics of all hydrogen and helium nuclides. Originality. Novel contributions include the concept of a nuclear polymer and its mechanics; an explanation of the stability, instability, or nonexistence of nuclides starting from the strong/synchronous force; explanation of the role of the neutron. The theory opens a new field of mechanics by which nucleon interactions may be understood.

Publisher

Hindawi Limited

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3