Influences of Coal Properties on the Principal Permeability Tensor during Primary Coalbed Methane Recovery: A Parametric Study

Author:

Zang Jie123ORCID,Ma Ze2,Ge Yong2,Li Chengxin2

Affiliation:

1. Beijing Key Laboratory for Precise Mining of Intergrown Energy and Resources, China University of Mining and Technology, Beijing 100083, China

2. School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China

3. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Jiaozuo 454150, China

Abstract

Coal permeability is intrinsically anisotropic because of the cleat structure of coal. Therefore, coal permeability can be denoted by a second-order tensor under three-dimensional conditions. Our previous paper proposed an analytical model of the principal permeability tensor of coal during primary coalbed methane (CBM) recovery. Based on this model, 18 modeling cases were considered in the present study to evaluate how the principal permeabilities were influenced by representative coal properties (the areal porosity, the internal swelling ratio, and the Young modulus) during primary CBM recovery. The modeling results show that with regard to the influences of the areal porosity on the principal permeabilities, an increase in cleat porosity reduces the sensitivity of each principal permeability to pore pressure change. The magnitudes of the principal permeabilities are positively proportional to the internal swelling ratio. The principal permeabilities thus tend to monotonically increase with a depletion in the pore pressure when the internal swelling ratio increases. Because the internal swelling ratio represents the extent of gas-sorption-induced matrix deformation, an increase in the internal swelling ratio increases desorption-induced matrix shrinkage and thus induces an increase in permeability. The principal permeabilities are positively proportional to the isotropic principal Young moduli and the synchronously changing anisotropic principal Young moduli. On the other hand, the principal Young modulus within the plane of isotropy influences the principal permeabilities within this plane in diverse patterns depending on both the dip angle of the coalbed and the pitch angle of the cleat sets. The principal permeability perpendicular to the plane of isotropy is positively proportional to this principal Young modulus, and this correlation pattern is independent of both the dip angle and pitch angle.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3