A Network Pharmacology-Based Approach to Investigating the Mechanisms of Fushen Granule Effects on Intestinal Barrier Injury in Chronic Renal Failure

Author:

Han Miaoru1,Yu Hangxing1,Yang Kang1,Liu Panying1,Yan Haifeng1,Yang Zhihua1,Yang Hongtao1ORCID

Affiliation:

1. Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China

Abstract

Purpose. Fushen Granule (FSG) is a Chinese medicine prepared by doctors for treating patients with chronic renal failure, which is usually accompanied by gastrointestinal dysfunction. Here, we explore the protective effect of FSG on intestinal barrier injury in chronic renal failure through bioinformatic analysis and experimental verification. Methods. In this study, information on the components and targets of FSG related to CRF is collected to construct and visualize protein-protein interaction networks and drug-compound-target networks using network pharmacological methods. DAVID is used to conduct gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Then, it is validated by in vitro experiments. In this study, the human intestinal epithelial (T84) cells are used and divided into four groups: control group, model group, FSG low-dose group, and FSG high-dose group. After the experiment, the activity of T84 cells is detected by a MTT assay, and the expressions of tight junction protein ZO-1, claudin-1, nuclear factor erythroid 2-related factor (Nrf2), heme oxygenase-1 (HO-1), malondialdehyde (MDA), and cyclooxygenase-2 (COX-2) are examined by immunofluorescence and/or western blotting. Results. Eighty-six potential chronic renal failure-related targets are identified by FSG; among them, nine core genes are screened. Furthermore, GO enrichment analysis shows that the cancer-related signaling pathway, the PI3K-Akt signaling pathway, the HIF1 signaling pathway, and the TNF signaling pathway may play key roles in the treatment of CRF by FSG. The MTT method showed that FSG is not cytotoxic to uremic toxin-induced injured T84 cells. The results of immunofluorescence and WB indicate that compared with the control group, protein expressions level of ZO-1, claudin-1, and Nrf2 in T84 cells is decreased and protein expressions level of HO-1, MDA, and COX-2 is increased after urinary toxin treatment. Instead, compared with the model group, protein expressions level of ZO-1, claudin-1, and Nrf2 in T84 cells is increased and protein expressions level of HO-1, MDA, and COX-2 is decreased after FSG treatment. Conclusion. FSG had a protective effect on urinary toxin-induced intestinal epithelial barrier injury in chronic renal failure, and its mechanism may be related to the upregulation of Nrf2/HO-1 signal transduction and the inhibition of tissue oxidative stress and inflammatory responses. Screening CRF targets and identifying the corresponding FSG components by network pharmacological methods is a practical strategy to explain the mechanism of FSG in improving gastrointestinal dysfunction in CRF.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3