Secure Three-Factor Anonymous User Authentication Scheme for Cloud Computing Environment

Author:

Lee Hakjun1ORCID,Kang Dongwoo2ORCID,Lee Youngsook1ORCID,Won Dongho2ORCID

Affiliation:

1. Department of IT Software and Security, Howon University, Gunsan, Republic of Korea

2. Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea

Abstract

Cloud computing provides virtualized information technology (IT) resources to ensure the workflow desired by user at any time and location; it allows users to borrow computing resources such as software, storage, and servers, as per their needs without the requirements of complicated network and server configurations. With the generalization of small embedded sensor devices and the commercialization of the Internet of Things (IoT), short- and long-range wireless network technologies are being developed rapidly, and the demand for deployment of cloud computing for IoT is increasing significantly. Cloud computing, together with IoT technology, can be used to collect and analyse large amounts of data generated from sensor devices, and easily manage heterogeneous IoT devices such as software updates, network flow control, and user management. In cloud computing, attacks on users and servers can be a serious threat to user privacy. Thus, various user authentication schemes have been proposed to prevent different types of attacks. In this paper, we discuss the security and functional weakness of the related user authentication schemes used in cloud computing and propose a new elliptic curve cryptography- (ECC-) based three-factor authentication scheme to overcome the security shortcomings of existing authentication schemes. To confirm the security of the proposed scheme, we conducted both formal and informal analyses. Finally, we compared the performance of the proposed scheme with those of related schemes to verify that the proposed scheme can be deployed in the real world.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3