Long-Term Optimal Operation of the Cascade Hydro-Wind-Photovoltaic Hybrid System considering Transmission Section Constraints

Author:

Su Huaying1ORCID,Wei Huoqing2,Wei Xingchen2,Wang Guosong1,Zhang Yan1,Wang Rongrong1

Affiliation:

1. Power Dispatching & Control Center of Guizhou Power Grid Co. Ltd., Guiyang 550002, China

2. Institute of Hydropower & Hydroinformatics, Dalian University of Technology, Dalian 116024, China

Abstract

With the sharply increased development of variable renewable energy resources (VRERs) in recent years, the hydro-wind-photovoltaic (PV) hybrid system (HWPHS) has the prospective to enhance the grid integration of VRERs. Nevertheless, the intense variation associated with wind and PV generation causes uncertainties in the long-term operation of the HWPHS. To overcome this drawback, this paper develops a novel method to derive adaptive operating rules for a cascade HWPHS. First, a scenario-generating method coupling Kernel density estimation with the copula function is proposed to characterize the wind and PV forecast errors. Second, based on the power generation scenarios, an optimal scheduling model for the cascade HWPHS considering transmission section constraints is proposed to simulate the hydro-wind-PV complementary operation; finally, the long-term operating rules for the cascade HWPHS are extracted by grey relational analysis and BP neural network. As a case study, the HWPHS of the Wu River basin in China is chosen. Results demonstrate that the proposed model can effectively utilize the flexibility of cascade hydropower stations, improve transmission section utilization efficiency, and promote clean energy absorption.

Funder

China Southern Power Grid

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3