Ubiquitin-Specific Peptidase 8 Modulates Cell Proliferation and Induces Cell Cycle Arrest and Apoptosis in Breast Cancer by Stabilizing Estrogen Receptor Alpha

Author:

Zheng Lewei1,Yang Qian1,Li Chengxin1,Xu Gaoran1,Yuan Qianqian1,Hou Jinxuan1,Wu Gaosong1ORCID

Affiliation:

1. Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China

Abstract

Breast cancer (BC) is the most common neoplastic and lethal malignancy in women. Although antiendocrine therapy is the main treatment for estrogen receptor alpha (ERα)-positive BC, the development of resistance is a major clinical complication. In this study, we aimed to explore the role of ubiquitin-specific peptidase 8 (USP8) in ERα signaling and identify potential targets for endocrine resistance. Public databases were used to analyze USP8 expression, prognosis, clinical characteristics, and immune cell infiltration. Immunohistochemistry and western blot assays were used to detect protein levels and ERα signaling. Quantitative reverse transcription-PCR was used to measure ERα target gene expression. The cell counting kit-8, wound-healing, clone formation, and Transwell assays were used to investigate the effects of USP8 depletion or inhibition on cell proliferation, migration, and invasion. An immunofluorescence assay was used for localizing USP8 and ERα, and a protein stability assay was performed for detecting the degradation of ERα protein. The cell cycle and apoptosis were assessed using flow cytometry. USP8 was highly expressed in the luminal subtype of BC and was associated with poor prognosis. The infiltration levels of many immune cells were positively correlated with USP8 expression. Depletion of USP8 dramatically decreased the ERα signaling activity and weakened the proliferation, migration, and invasion capabilities of BC cells. USP8 knockdown markedly induced apoptosis and cell cycle arrest ( G 0 / G 1 ). Colocalization analysis and protein stability assays indicated a probable mechanism by which USP8 regulates ERα. Our study demonstrates that USP8 might be crucial in BC development and may be considered a potential target for treating ER-positive BC malignancies in vitro.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3