Fundamental Fresh State Properties of Self-Consolidating Concrete: A Meta-Analysis of Mix Designs

Author:

Garcia-Taengua Emilio1ORCID

Affiliation:

1. School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK

Abstract

The study reported in this paper is the first meta-analysis aimed at obtaining statistical models for the fresh state behavior of self-consolidating concrete (SCC) mixes which effectively reproduce the complex relationships between mix design and fresh state performance. A database compiled with data from more than 120 different sources was analyzed. This study proves that SCC fresh state performance is determined by three fundamental, uncorrelated properties: flow time, flow spread, and resistance to segregation, which constitute a robust mathematical framework for the optimization of SCC mixes. The models obtained for these fundamental properties have proved consistent and reproduce very well the general trends and interactions implicit in SCC mix design recommendations, which in effect constitute the mathematical validation of recommendations well sanctioned by practice. It has been proved that, if no supplementary cementitious materials (SCMs) are used, there is a remarkably narrow margin in which the three fundamental properties of fresh SCC mixes can be simultaneously optimized. The most stable mixes were found to be associated with sand-to-coarse aggregate ratios of at least 1.1. The flowability of SCC mixes in terms of both flow times and flow spread can be optimized when the following conditions concur: w/c ratio of 0.45, SCMs content below 100 kg/m3, and sand content not lower than 750 kg/m3. Furthermore, it was also proved that, in general, it is best to keep the dosages of superplasticizers (HRWRs) and viscosity-modifying agents (VMAs) below 1.7% and 0.7%, respectively, subject of course to variation across the different types of products available.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3