Effect of Curing Conditions on the Shrinkage of Ultra High-Performance Fiber-Reinforced Concrete

Author:

Han Song1ORCID,Cui Yefu1,Huang Hanfeng1,An Mingzhe1,Yu Ziruo1

Affiliation:

1. School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

The effect of curing conditions on the early age and long-term shrinkage of ultra high-performance fiber-reinforced concrete (UHPFRC) was systematically studied. The shrinkage of the early age (0–168 h) and long-term age (0–90 d) of UHPFRC material was measured based on three kinds of humidity conditions (dry, sealed, and soaked) and curing temperatures (25°C, 40°C, and 75°C), respectively. In this paper, the hydration degree of different shrinkage stages was studied in combination with chemical-bound water experiment. Meanwhile, the influencing mechanism of curing condition on the shrinkage of UHPFRC was analyzed. The results show that the early shrinkage rate of UHPFRC is accelerated with the increase of temperature, and the rate of shrinkage development at the latter stage is suppressed with the increase of temperature. With the increase of humidity, the early age shrinkage of UHPFRC and its increasing rate gradually decrease, which means drying condition > sealing condition > soaking condition. According to the long-term shrinkage results, increasing temperature has very significant inhibiting effect on the UHPFRC shrinkage in the sealed condition. Due to the majority of the in-site components of UHPFRC cured in the sealed condition, high-temperature curing has evident inhibition of early age shrinkage of UHPFRC. Therefore, promoting curing temperature is fairly effective at inhibiting the early age shrinkage of UHPFRC for the in-site structures.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3